产品描述
pps塑胶原料的特性用玻璃纤维增强后的热性能指标更高,它的高连续使用温度达400度,pps的热稳定性优良,加热至500度时重量损失不明显,至700度时才会完全降解,它的力学性能随温度的升高下降很少,在232度经5000h的热老化后,其抗弯强度和抗拉强度还能保持50%以上。pps的抗拉强度、抗弯强度等性能在工程塑料中属中等水平,而伸长率和冲击强度却很低,因此在受力构件中使用pps通常加入添加剂,如玻纤、碳纤、填料等来增强其力学性能,pps通过这种改性后,主要力学性能,如抗拉性能、抗弯性能、压缩和冲击强度均有大幅度提高,伸长率却有下降,改性后的pps能在长期负荷和热负荷的作用下保持高的力学性能和尺寸稳定性,在低于175度时不溶于任何已知的溶剂,pps与一般溶剂接触时不会出现塑件开裂现象。pps由于分子链是由苯环和硫原子交替排列组成,本身具有阻燃作用,无须加入阻燃剂就可以达到UL-94-VO级水平。它的氧指数可达44%-53%,与pvc相近,是一种自熄性塑料,pps对紫外线、射线等也很稳定,在照射时不会表面发粘或分解的现象。pps的主要不足是韧性较差,冲击强度较低,熔体粘度不够稳定等。
pps的主要用途编辑pps的应用是以其优异的耐热性为中心,兼顾它的减摩自润滑性,化学稳定性、尺寸稳定性,阻燃性和电绝缘性等。在化工行业pps可用作合成、输送、储存物料的反应罐、管道、阀门、化工泵等,在机械中心pps可制作叶轮、叶片、齿轮、偏心轮、轴承、离合器及耐磨零件;pps的主要用途还是在电子电器领域,如制作变压器骨架,高频线圈骨架、插头、插座、接线架、接触器转鼓鼓片及各种精密零件等。物料性能1、电绝缘性(尤其高频绝缘性)优良,白色硬而脆,跌落于地上有金属响声,透光率仅次于玻璃,着****耐水性,化学稳定性良好 。有优良的阻燃性,为不燃塑料2、强度一般刚性很好,但质脆,易产生应力脆裂;不耐苯、汽油等溶剂;长期使用温度可达260度 ;在400度的空气或氮气中保持稳定。通过加玻璃纤维或其它增强材料改性后,可以使冲击强度大为提高耐热性和其它机械性能。密度增加到1.6-1.9,成型收缩率减小到0.15-0.25% 适于制作耐热件、绝缘件及化学仪器、光学仪器等零件3、 成型性能好,无定形料,吸湿小,但宜干燥后成型4、流动性介于ABS和PC之间。凝固、收缩小、易分解,应用范围 一般可应用于制造PPS管、PPS板材等材料,多用于建筑、家居方面。
PPS注塑产品填充阶段填充速度对制件的影响:填充是整个注塑循环过程中的一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。
高速填充。高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。
低速填充。热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。
由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。
一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。
产品推荐